
Ultralow Superharmonic Resonance for
Functional Nanowires
David Cohen-Tanugi, Austin Akey, and Nan Yao*

Princeton, Institute for the Science and Technology of Materials, Princeton University, Princeton New Jersey 08544

ABSTRACT Functional nanowires, made from materials such as zinc oxide, offer the promise of energy scavenging and precise sensing
due to their vibrational properties, but their high intrinsic resonance frequencies (in the kilohertz to megahertz range) have limited
the applications in nanotechnology. In this paper, we describe a method for introducing a new type of resonance at ultralow frequencies
in ZnO nanowires. By using in situ ion implantation, nanodevice assembly, electronic signal generation, mechanical measurement,
and electron beam characterization, we have achieved resonance at frequencies two orders of magnitude lower than the natural
resonance frequency. Through both experimental investigation and theoretical simulation, we show that electric charge imbalance
arising from focused ion beam exposure is responsible for the creation of this unprecedented superharmonic resonance behavior in
ZnO nanowires.
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In recent years, functional nanowires have been exten-
sively studied for their potential as ultraprecise sensors,1,2

actuators,3 balances,4,5 as well as energy-scavenging
devices.6 By fixing nanowires as cantilevers and exploiting
their vibrational properties, it has been possible to develop
applications as diverse as electric components that can self-
power using body movements or biosensors that can detect
the presence of individual molecules based on their vibra-
tional properties.7,8 However, many of the most exciting
applications of vibrating nanowires have faced an important
roadblock: the resonance frequency of nanowires is typically
in the kilohertz to megahertz range, while the driving
frequencies involved in sensing and energy-scavenging ap-
plications are several orders of magnitude lower. Therefore,
it is crucial to find solutions to lower the frequency range in
which nanowires can resonate.8 Here we report a novel
method that allows nanowires of materials such as zinc
oxide (ZnO) driven by an oscillating electric field to experi-
ence resonance at low fractions of their natural frequency
by means of ion implantation. Using this technique, we are
able to selectively tune ZnO nanowires in order to make
them sensitive to frequency ranges as low as 1/66 of their
natural resonance frequency. These ultralow superharmonic
frequencies could therefore offer tremendous advances in
the field of nanosensors and self-powered devices, and open
an avenue for low-frequency applications as well as selective
frequency tuning.

We have configured ZnO nanowires as cantilevers by
attaching one end to a nanoelectrode and leaving the other
free in a scanning electron microscope (SEM). The nanowires
are driven to vibrate by an oscillating electric field between
the substrate nanoelectrode and a second nanoelectrode

positioned above the nanowire. The large dc component in
the field brings free charge to the tip of the nanowire, and as
long as the nanowire’s equilibrium position is not parallel to
the electric field, the transverse component of the oscillating
electric field dominates. In this case, the vibrational response
of the nanowire as a function of the driving frequency, Ω,
closely follows the classical behavior predicted by the Euler-
Bernoulli model for elastic rods. The appearance of resonances
is classically dictated by the Euler equation

where U(x) is the deflection from the equilibrium axis at
position x along the nanowire, Y is the elasticity (or Young’s
modulus), FA is the mass per unit length, I is the area moment
of inertia, and f(x,t) is the externally applied force. Supple-
mented with the appropriate boundary conditions, this system
leads to a natural resonance frequency ω0 ) 1.8762(YI/FA)1/2,
as well a second harmonic mode at 6.2ω0. In the classical case
the nanowire does not enter resonance below these frequencies.

One exception has been reported in which nanowires can
be made to resonate at an integer fraction of their natural
frequency when driven by a parametric driving force. Yu et
al. observed the appearance of parametric resonance up to
fourth order (2ω0/n, n ) 1, 2, 3, 4) in a boron nanowire, and
this led to a new interest in the phenomenon of parametric
resonance as a way to sensitize nanowires to lower reso-
nance frequencies.9 However, the search for ultralow reso-
nance frequencies was largely discontinued because the
existing mechanism could only enable parametric resonance
up to a relatively low order (ne 4). In this paper, we describe
a new approach that utilizes charge imbalance in nanowires
in order to bring parametric resonance to a higher order of
n > 130.
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We first present the experimental methods which were
employed to sensitize ZnO nanowires by ion beam exposure
and to subsequently measure their resonance frequencies.
Next, we describe the material effects of ion exposure on a
ZnO nanowire, including the change in local elasticity and
the accumulation of electric charge imbalance. Using these
results, we then present a resonance model indicating how
electric charge imbalance can induce the observed ultralow
harmonic resonance.

Experimental Methods. Wurtzite ZnO nanowires were
synthesized using thermal evaporation of oxide powders
without the presence of a catalyst. ZnO powders of 99.99%
purity were heated in a tube furnace until they evaporated,
then the resulting nanostructures were captured on a plate
at the downstream end of the furnace. The resulting nano-
wires were characterized using scanning electron micros-
copy (SEM) and transmission electron microscopy (TEM).
They were found to be monocrystalline, wurtzite nanowires
with diameters ranging from 50 to 300 nm and lengths from
5 to 100 µm. The nanowires were largely free of lattice
defects and had only a thin layer of surface oxide from
exposure to air. No particles were observed at the ends of
the nanowires.

The nanowires were suspended in acetone and deposited
onto a carbon-coated copper TEM grid before being mounted
in the instrument for analysis. SEM characterization and in
situ electromechanical measurements were carried out
within a dual-beam focused ion beam (FIB) system (FEI DB
Strata 235 FIB/SEM) equipped with a gas injection system
for Pt deposition, a Zyvex F100 nanomanipulator system to
manipulate the nanowires, and a Keithley 4200 nanoelec-
tronic system for signal generation and measurement.

The nanowires were mounted into the final experimental
setup, which was comprised of a pair of needle-shaped
nanoprobes configured as electrodes via an electrical circuit,
as shown in Figure 1. Each nanowire was successively fixed
to the anode at an angle of approximately 15° from the
plane of the anode, and the cathode was placed 5 µm away
from the tip of the nanowire. In order to assemble the

experimental setup, the nanowires were lifted from the grid
using chemically sharpened tungsten nanoprobes, and Pt
electrodes were deposited on the nanowire/nanoprobe junc-
tion to create mechanical and electrical connections. These
electrodes were created by first injecting a cloud of organo-
metallic molecules containing platinum ((MeCp)PtMe3). The
focused ion beam was then used to separate the platinum
atoms from the organometallic precursor and deposit them
on the junction in a layer approximately 1 µm thick, using a
beam current of 10 pA. A dc voltage with amplitude between
5 and 10 V was applied to the second electrode, and a sine-
wave ac voltage of between 0.5 and 1 V was applied to the
nanowire using an Agilent 33220A function/arbitrary wave-
form generator. The frequency of the ac voltage was varied
between 1 kHz and 2 MHz and the resulting amplitude of
oscillation was observed via SEM. Length and diameter were
measured by observing the dimensions of the nanowire at
rest on the substrate grid. The nanoprobes were carefully
coplanarized immediately before the experiment to prevent
the extraplanar electric field from distorting the oscillations.

For a pristine, freshly attached nanowire, the frequency
of the ac current was adjusted until the primary resonant
frequency was found. The process of identifying the primary
resonant frequency is described in further detail below. The
nanowires were then exposed to a FIB beam, introducing
defects in their structure. A Ga+ ion beam current of 100 pA
at an accelerating voltage of 30 kV was used, and each
individual nanowire received 30 s of constant exposure
along its entire length. The exposure was produced by
scanning the ion beam in a serpentine pattern over a square
region containing the nanowire and the tungsten probe tip.
Initially the vibration response was tested every 2 s; it was
found however that a single continuous 30 s of exposure
produced the most reproducible results with the least scan-
ning time. The presence of defects was confirmed by TEM
observation of nanowires after FIB exposure.

Experimental Results and Discussion. We now consider
the resonance frequencies of a specific nanowire, whose
behavior fell within the average of the nanowires observed
in this study. The dimensions of this nanowire were 200 nm
in thickness and 40 µm in length. Prior to ion beam
exposure, the natural resonance frequency of the nanowire
was identified as the second lowest resonant frequency,
since the electrically driven external force on the nanowire
contains terms in both sin(Ωt) and sin(2Ωt) as has been
discussed elsewhere.10 Above this frequency, the second
harmonic was observed at approximately 6.2 times the
primary resonant frequency, as expected for a classical
oscillating cantilever. Using this standard methodology, we
obtained a natural frequency f0 ) 2πω0 ) 198 kHz. Figure
2 shows the primary resonance and the second harmonic
as observed using scanning electron microscopy imaging.
No additional resonances were present between the primary
frequency and the second harmonic, except for a duplicate
resonance very near the natural frequency. This period

FIGURE 1. Schematic diagram of the experimental setup. The setup
is comprised of a pair of needle-shaped nanoprobes configured as
electrodes via an electrical circuit, with a ZnO nanowire fixed to the
anode and placed about 5 µm away from the cathode. The electric
field between the two electrodes consists of a sinusoidal ac field
superimposed onto a constant dc field. After one face of the nanowire
is exposed to a focused ion beam system, the nanowire enters
resonance for ac frequencies smaller than its natural frequency.
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doubling is due to the fact that the ZnO nanowires used in
this experiment had a rectangular cross section, which led
to two distinct orientations of vibration for each classical
mode. The period doubling thus corresponds to a vibration
mode which is orthogonal to the plane of the first resonance
and whose value depends on the specific cross-sectional
morphology of the nanostructure. After FIB exposure, the
natural resonance frequency remains unaltered (within a
range of (10%), but a series of superharmonic resonances
below ω0 begin to appear. Each of these resonant vibrations
is captured in a SEM image as shown in Figure 3, which
clearly reveals a trend of increase in vibration amplitude.
The vibrational behavior summarized in Table 1 indicates
that after ion beam exposure, the superharmonic reso-
nance frequencies of the ZnO nanowire vary inversely
with the frequency number n. There is an excellent
agreement between the observed resonance frequencies
and calculated values according to the formula ωn ) 2ω0/
n, with a percent error consistently below 0.3%, as shown
in Figure 4. This frequency pattern corresponds to the

phenomenon of superharmonic resonance arising from
parametric driving (parametric resonance has been stud-
ied extensively in the field of applied mathematics; see
ref 11 for a valuable review of the topic). We were able to
observe the appearance of superharmonic frequencies
from n ) 2 to n ) 132, according to the sequence n ) 2,
4, 12, 20, ..., 4(2m + 1), ending with a resonance at fmin

) 2.98 kHz which corresponds to 1/66 of the natural
frequency (or equivalently, n ) 132).

In addition, the classical resonant modessincluding the
fundamental mode at ω0 and the second harmonic at ω1 ≈
6.2ω0swere each observed to occur at two different values
which were very close to each other. This is consistent with
the period doubling observed before ion beam exposure. In
contrast, no period doubling was seen in the case of the
superharmonic resonances. This absence indicates that the
mechanism behind parametric resonance is “frozen in” to
one orientation of the nanowire, thereby ruling out the
possibility that the superharmonic behavior might be caused

FIGURE 2. Scanning electron microscopy images showing the natural (a) and second harmonic (b) resonant modes of a ZnO nanowire driven
by an oscillating electric field. The inserts in (a) and (b) illustrate the corresponding theoretical modes for a string fixed with both ends.
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by ordinary nonlinear driving at large amplitudes12 or by the
purely isotropic parametric resonance observed in previous
studies.9

Theoretical Charge-Imbalance Resonance Model. We
now investigate the material effects of ion beam exposure
on a ZnO nanowire using theory as well as Molecular
Dynamics (MD) simulations, in order to show how ion-beam-
induced electric charge imbalance can produce the observed
superharmonic resonances. As the projectile Ga+ ions from
the FIB enter the ZnO surface and collide with a lattice
atoms, they can create vacancies by ejecting lattice atoms
from their position. After gradually losing energy due to
electronic and nuclear collisions, the Ga+ ions eventually
come to a stop and remain implanted within the ZnO lattice
unless they had been backscattered away from the nanowire
during the interaction.13 The SRIM software developed by
Ziegler et al. was employed to simulate the implantation of
Ga+ ions into a ZnO target with different ion beam ener-
gies.14 Using SRIM, we have estimated the depth of ion

FIGURE 3. Scanning electron microscopy images illustrating the superharmonic resonances in a ZnO nanowire that are not predicted by
classical rod theory. (a)-(q) show the evolution of vibration amplitudes for increasing frequency number n.

TABLE 1. The Superharmonic Resonant Frequencies Measured
in an FIB-Exposed ZnO Nanowire and the Corresponding
Vibration Amplitudes

resonant frequency (kHz) max amplitude (µm)

2.975 3.860
3.168 4.210
3.389 4.475
3.640 4.739
3.933 5.177
4.275 5.791
4.684 5.615
5.182 7.195
5.791 8.770
6.564 9.125
7.577 10.354
8.960 12.284

10.954 14.214
14.082 15.272
19.731 17.022
32.782 20.092
98.463 30.881

198.893 >80
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implantation within a nanowire; the nature and proportion
of lattice defects such as vacancy creations, interstitials, and
substitutions; and the percentage of Ga+ ions that are
backscattered from the ZnO surface. For this purpose, the
SRIM simulations were performed by colliding 1000 succes-
sive Ga+ ions into a ZnO target. These simulations were
performed both for ion beams entering the sample perpen-
dicularly to the surface and at an incidence angle of 52° relative
to the normal, which are the standard impact angles for the
dual-beam FIB setups. In keeping with the experimental condi-
tions described above for ion exposure, our numerical calcula-
tions assume a typical FIB apparatus with an ion beam energy
E ) 30 keV and a beam current of 100 pA.15

The implantation cross sections obtained in SRIM are
shown in Figure 5. The implantation depth ranges from 80
to 280 Å, which corresponds to 2-7% of the thickness of
the nanowire. The visual cross-section also shows that there
is a sharp cutoff between the implanted region and the
deeper volume where few Ga+ ions are implanted. There-

fore, contrary to what has been suggested by Weissenberger
et al.,16 the effect of FIB implantation appears not to be
distributed through the entire thickness of ZnO nanowires
but rather limited to a superficial layer on the exposed face.
The density of implanted Ga+ ions within the nanowire
subsurface is then calculated by taking into account the
nanowire’s dimensions (200 nm × 40 µm), the fraction of
the ion beam cross section which interacts with the nano-
wire (determined by the magnification level used), and the
depth of the implantation layer (on the order of 100 Å). On
the basis of the results obtained in SRIM and giving an
exposure time of order t ) 30 s, the density of implanted
Ga+ ions and the density of final vacancies are found to be
Fion ) 0.015 ions per unit cell and Fv ) 0.2 vacancies per
unit cell, respectively (see Table 2). Here we consider only
the effect of final vacancies remaining in the lattice after
exposure, since it has been shown that only ∼1% of vacancy
creations remain in ZnO after FIB exposure due to strong
dynamic annealing.4

We have modeled a ZnO nanowire structure using lattice
properties obtained in SRIM simulation. Subsequent MD
calculations of this replicated structure, performed using
Materials Studio GULP and Forcite, indicate that the com-
bined effect of lattice vacancies and implanted Ga+ ions
leads to a reduction in elasticity of 40-50%. It is known that
even with a slight change in the nature of atomic bonding,
the elasticity of nanostructured material can vary signifi-
cantly.17 According to the MD calculations, the numerical
values for the elasticity modulus of untreated and FIB-
exposed ZnO are 426 and 182 GPa, respectively. The
calculated value for the elasticity modulus of bulk ZnO is
significantly larger than the accepted experimental value
(140 GPa), but this is consistent with most other studies that
have numerically estimated the elasticity of ZnO and other
metal oxides.18 Indeed, there is currently a scientific con-
sensus that MD simulations tend to overestimate the elastic-
ity of ZnO compared to experimental values, and it has been

FIGURE 4. A direct comparison of observed superharmonic frequencies and calculated values shows an excellent agreement between
experiment and theory. The error line represents the percent difference between observed and predicted values.

FIGURE 5. Cross sections of the interaction volume of a Ga+ ions
onto a ZnO target, for two values of beam energy Ẽ and incidence
angle R, as calculated using the SRIM software: (a) Ẽ ) 10 keV and
R ) 52°; (b) Ẽ ) 30 keV and R ) 52°; (c) Ẽ ) 10 keV and R ) 0°; (d)
Ẽ ) 30 keV and R ) 0°.
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suggested that these simulations may actually be more
accurate than experimental results due to the presence of
surface contaminants and oxide layers which decrease the
observed elasticity of ZnO.19 Upon FIB exposure, the im-
planted surface also experiences a slight increase in mass
density due to Ga+ ions which remain within the lattice.
Assuming the ion density Fv calculated above within the
implanted region and using the mass density of Ga (70 g/mol),
it is found that the FIB implantation leads to an increase of 0.07
g/cm3. This represents a negligible increase of 1% compared
to the density of untreated ZnO (5.606 g/cm3). Thus, the
elasticity of the nanowire is reduced in the region affected by
ion implantation, while the mass density remains approxi-
mately unchanged. However, these mechanical changes alone
cannot acount for the appearance of ultralow resonances in the
FIB-exposed ZnO nanowires.

Although untreated ZnO acts a semiconductor, FIB ex-
posure can also lead to important changes in the material’s
ability to conduct electric charge. Kucheyev et al. observed
that FIB bombardment using light ions in the megaelectron-
volt range increases the resistance of ZnO by as much as 7
orders of magnitude as charge carriers become “trapped”
due to the effects of FIB implantation.20 Additionally, Weis-
senberger et al. have reported an increase in electrical
resistance in ZnO nanowires by a factor of 1000 for Ga+ ion
doses of approximately 1014 ions per cm2.16 Due to the
implantation of positive Ga+ ions and the simultaneous
escape of secondary electrons, FIB exposure can thus intro-
duce an imbalance between the electric charge density of
the ZnO nanowire’s exposed and unexposed faces. One can
obtain an estimate for the magnitude of this charge imbal-
ance by assuming a static accumulation of positive electric
charge on the FIB-exposed face and regular conducting
behavior in the unexposed face. This yields an imbalance
of approximately ∆q ) 3 × 108 C/m3, although this estimate
does not take into account the possibility of deeper Ga+

implantation into the unexposed section of the nanowire
which can occur in case of ion tunneling. The effect of ion
tunneling is negligible to first order due to the strongly
annealing properties of ZnO.

We now derive a model that describes the ultralow
superharmonic resonance of a ZnO nanowire due to
charge imbalance. The diagram in Figure 6 schematically
shows the effect of nonuniform charge distribution on the

balance of forces in a cross-sectional element of the
nanowire. From the Lorentz force law, each infinitesimal
section of the nanowire experiences a force due to the
external electric field that is proportional to its own
electric charge as well as to E(t), the oscillating external
field, and points in the direction of E. Because the FIB-
exposed face of the nanowire contains more positive
charge than the unexposed face, it experiences a stronger
force from the oscillating field than the unexposed face
does. When the deflection, θ, is nonzero, the axial com-
ponent of this force on the FIB-exposed face is therefore
larger than the corresponding axial component exerted
on the unexposed face. The force imbalance gives rise to
a moment (or torque) whose magnitude depends on the
angle between the nanowire axis and the direction of the
external electric field. Specifically, the magnitude of this
force imbalance scales with sin(θ) because the axial forces
on either face of the nanowire are both proportional to

TABLE 2. Implantation Properties of a ZnO Nanowire Exposed to an FIB with Beam Energies 10 and 30 keV and with Incidence
Angles 0° and 52°a

beam energy
backscattered

ions (%)
vacancies
per ion

implantation
depth (Å)

lateral extent of
penetration (Å) Fion Fv

10 keV (0°) 0.3 130 80 50 0.018 2.3
30 keV (0°) 0.0 390 140 50 0.010 4.0
10 keV (52°) 6.1 130 40 60 0.033 4.3
30 keV (52°) 5.6 390 90 110 0.015 5.8

a The proportion of backscattered ions, the number of vacancy events per incident Ga+ ion, and the implantation depth are calculated directly
from calculations in SRIM. The resulting density of implanted Ga+ ions and of vacancy events (per unit cell), Fion and Fv, respectively, are derived
using the results from SRIM as well as the nanowire geometry.

FIGURE 6. Schematic diagram of a ZnO nanowire exposed to FIB on
its left face. The accumulation of positive charge on the implanted side
leads to charge imbalance, which in turns leads to a bending moment
along the length of the nanowire. This bending moment leads to the
appearance of FIB-induced superharmonic resonance.
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sin(θ).Thus, the element at position x along the nanowire
experiences an additional bending moment of the form

where M0 is a constant determined by the geometry of
the nanowire and the mode shape, E(t) ) E0 cos Ωt is the
oscillating external electric field, ∆q is the charge imbal-
ance between the FIB-exposed and unexposed side of the
nanowire, and Θ is the angle between the nanowire axis
and the direction of E. Denoting the lateral displacement
at position x along the nanowire as U(x), the sin(Θ) term
can be expanded as

The vibrational equation of motion (EOM) of a nanowire
containing charge imbalance driven by an external electric
field is therefore:

where �0 ) M0∆qE0 and we have kept only the dominant
term in the expansion of (U/x)′′ and eliminated the x-

dependence of the problem by averaging x3 over the length
of the nanowire, denoted L. This equation is identical to the
EOM of a classical Euler beam, with the addition of a
parametric term which depends on both the dependent
variable t and the independent variable U. Because the effect
of the external driving force, f(x,t), is already well-under-
stood, we consider the homogeneous problem in which the
only forcing term comes from the parametric term 8�0/L3

cos(Ωt)U(x,t). A damping term proportional to ∂U/∂t is
sometimes included in the equation of motion, but it has
been shown that this damping has little effect on the value
of the resonance frequencies due to a high Q factor between
10 and 100.21 Therefore, this term is also omitted here for
mathematical simplicity.

Since the effect of charge imbalance is small compared
with the driving force at the tip, we may use a perturbation
approach in which the mode shapes, X(x), are still related
to the wavenumber k by the relation X(4)(x) ) k4X(x), as in
the classical case. After separating variables and defining
some new parameters, the EOM can be directly rewritten
as a Mathieu equation

where a ) (2ω0/Ω)2, q ) 16�0/(FAL3Ω2), and τ ) Ωt/2. The
Mathieu equation is most commonly known for governing
the response of a classical pendulum with a vertically driven
support. A crucial result from parametric oscillation theory
is that there exists a discrete set of driving frequencies Ω

FIGURE 7. The comparison of resonance amplitude behaviors for the case where q ∝ 1/Ω2 (as predicted by FIB-induced superharmonic
resonance), and the case where q ) constant (such as for a driven pendulum). The y-axis represents Im(λ), which indicates the vibrational
amplitude of the system under damped conditions. The graph shows that for q ) constant, the resonance amplitude is almost zero for frequency
numbers n e 2, while the resonance amplitudes remain large in the case where q ) q(Ω) even well below the natural frequency. This implies
that the observed resonances are indeed due to charge imbalance.

∆M(x, t) ) M0 sin(Θ)∆qE(t) (2)

sin(Θ) ) U

√U2 + x2
≈ U

x
(3)

YI
∂

4U(x, t)

∂x4
-

8�0

L3
cos(Ωt)U(x, t) + FA

∂
2U(x, t)

∂t2
) f(x, t)

(4)

∂
2u

∂τ2
) -(a - 2q cos 2τ)u (5)

© 2010 American Chemical Society 858 DOI: 10.1021/nl903302q | Nano Lett. 2010, 10, 852-–859



for which the solution is resonant.22 Each resonant fre-
quency range has a finite width, determined by the magni-
tude of the charge imbalance ∆q, and is centered at the
superharmonic resonance frequency

where ω0 is the natural resonance frequency. Thus, the
appearance of charge imbalance from FIB in a ZnO nano-
wire theoretically leads to parametric vibration and its
associated superharmonic resonances.

In our experiment, the ion-beam exposure mechanism
has led to superharmonic resonances up to a high order (as
high as n ) 132). The experimental results described above
provide a method for verifying that the amplitudes of charge-
imbalance-induced parametric resonance follow the behav-
ior predicted by eq 5. In order to compare the observed
resonance amplitudes with the amplitude behavior predicted
by the charge-imbalance resonance model, we note that the
parameter q in eq 5 is proportional to 1/Ω2. This is because
the magnitude of the parametric forcing increases with the
magnitude of the restoring force in the case of FIB-induced
parametric resonance. In contrast, the parameter q is typi-
cally independent of Ω in most occurrences of the Mathieu
equation (e.g., in the canonical case of a driven pendulum).23

Whether or not q depends on Ω has a significant influence
on the evolution of the amplitude associated with each
superharmonic resonance frequency ωn. The amplitude
dependence has been plotted as a function of the driving
frequency Ω in the case predicted by charge imbalance (that
is, when q is proportional to 1/Ω2) as well as the case where
q is independent of Ω in Figure 7. The amplitude is ex-
pressed in terms of the rate of divergence of the undamped
system, which is given by the imaginary part of the charac-
teristic exponent associated with the EOM (as obtained from
Floquet theory for parametric vibrations).23 The resonance
peaks occur at the same frequencies in both cases, but for q
) constant, the peak immediately below ω0 has dropped to
0.01 and the subsequent peaks have practically zero height.
In contrast, the peaks corresponding to charge imbalance
decay slowly for resonance frequencies below ω0, meaning
that significant resonance should still occur as low as ω0/15
or even ω0/66 (not shown in the figure). Since the experi-
mentally observed resonance amplitudes also decay slowly
with frequency number n, it follows that these observed
amplitudes point to charge imbalance as a cause of the
superharmonic resonances as opposed to an alternative
mechanism of the driven-pendulum type. The theoretically
derived evolution of resonance amplitude for increasing
parametric order n demonstrates the unique properties of
the charge-imbalance mechanism, which enables the ap-
pearance of parametric resonance at higher order than
previously possible.

Conclusion. We have investigated a mechanical phe-
nomenon that is unprecedented in the field of elastic rod
vibration. While the resonance behavior of regular nano-
wires is dictated by classical elasticity theory, we have shown
that partial ion-beam exposure can lead to high-order para-
metric resonance due to charge imbalance. From the per-
spective of future applications, these results are promising
because they suggest the application of ion implantation as a
reliable technique for tuning the resonance of nanodevices. By
enabling resonance to occur at frequencies two orders below
the natural frequency, this method opens a new range of
applications for vibrating functional nanowires. In fine-tuning
the level of exposure to an ion beam, we should be able to
further lower the superharmonic resonance frequency of nanow-
ires to increase their resonance sensitivity for ultraprecise
sensors, energy-scavenging devices, and other nanodevices.
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